$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n(\sum X^2) - (\sum X)^2][n(\sum Y^2) - (\sum Y)^2]}}$$

$$= \frac{10(3,600) - (56)(565)}{\sqrt{[10(364) - (56)^2][10(36,225) - (565)^2]}}$$

$$= \frac{(36,000) - (31,640)}{\sqrt{[(3,640) - (3,136)][(362,250) - (319,225)]}}$$

$$= \frac{4,360}{\sqrt{[504][43,025]}}$$

$$r = .936$$

Advertising Expenditures (x) (000)	Sales Revenue (y) (000)	x ²	XY	y ²
5	50	25	250	2,500
2	25	4	50	625
7	80	49	560	6,400
6	50	36	300	2,500
10	90	100	900	8,100
4	30	16	120	900
6	60	36	360	3,600
5	60	25	300	3,600
3	40	9	120	1,600
8	_80	64	640	6,400
56	565	364	3,600	36,225

IV. Coefficient of determination (r2)

- A. The coefficient of determination measures the total variation of the dependent variable (sales revenue) accounted for by variation of the independent variable (advertising expenditures).
- B. Approximately 88% of the variability in Linda's Video Showcase sales revenue is accounted for by advertising expenditure variability.

$$r^2 = (r)^2 = (.936)^2 = .876$$

V. Coefficient of nondetermination (\tilde{r}^2)

- A. The coefficient of nondetermination measures the total variation of the dependent variable (sales revenue) not accounted for by variation of the independent variable (advertising expenditures).
- B. Approximately 12% of the variability in Linda's Video Showcase sales revenue is not accounted for by advertising expenditure variability.

$$\tilde{r}^2 = 1 - r^2 = 1 - .876 = .124$$

Note: Advertising is not the only variable affecting sales. Multiple correlation and regression, not covered by Quick Notes, analyze the relationship between more than one independent variable and a dependent variable.

A note of caution. We have proven a high mathematical (linear) relationship between these 2 variables. We have not proven a cause-effect relationship.

VI. Measuring the significance of the coefficient of correlation

- A. To be significant, the population coefficient of correlation (ρ, the Greek letter for rho) cannot be zero.
- B. It must be determined whether r is large enough, given some level of significance, to indicate ρ is not zero.
- C. The 5-step approach to hypothesis testing
 - 1. The null hypothesis and alternate hypothesis are H_0 : $\rho = 0$ and H_1 : $\rho \neq 0$.
 - 2. The level of significance will be .05 for this two-tail problem with n 2 degrees of freedom. Two is subtracted because two variables, x and y, are being estimated.
 - 3. The relevant statistic is r.

$$df = n - 2 = 10 - 2 = 8 \rightarrow t = 2.306$$

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

Note: A large r leads to a large t and a large t leads to rejecting the null hypothesis. ρ is 0 because the H₀ is assumed to be true.

- 4. If t from the test statistic is beyond the critical value of t, the null hypothesis will be rejected.
- 5. Apply the decision rule.

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.936 - 0}{\sqrt{\frac{1 - (.936)^2}{10 - 2}}} = 7.52$$
 Reject H₀ because 7.52 > 2.306. This sample is not from a population with a coefficient of correlation equal to zero.